Call 0031 (0)6 2192 6253 or mail info@thefloorheater.eu
underfloor heating free calculation underfloor heating
materiaal specificaties vloerverwarming
home | examples | quotation | contact | materials calculator
drawings for layout plans underfloor heating calculating heat loss and dimensioning underfloor heating generating data underfloor heating

Underfloor heating and cooling is a form of central heating and cooling which achieves indoor climate control for therma comfort using conduction, radiation and convection. The terms radiant heating and radiant cooling are commonly used to describe this approach because radiation is responsible for a significant portion of the resulting thermal comfort but this usage is technically correct only when radiation composes more than 50% of the heat exchanged between the floor and the rest of the space.

History

Underfloor heating has a long history extending back into the Neoglacial and Neolithic periods. Archeological digs in Asia and the Aleutian islands of Alaska reveal how the inhabitants drafted smoke from fires through stone covered trenches which were excavated in the floors of their subterranean dwellings. The hot smoke heated the floor stones which then radiated into the living spaces. These early forms have evolved into modern systems using fluid filled pipes or electrical cables and mats. Below is a chronological overview of under floor heating from around the world.

Description

Modern underfloor heating systems use either electrical resistance elements ("electric systems") or fluid flowing in pipes ("hydronic systems”) to heat the floor. Either type can be installed as the primary, whole-building heating system or as localized floor heating for thermal comfort. Electrical resistance can only be used for heating so when space cooling is also required, hydronic systems are used. Other applications for which either electric or hydronic systems are suited include snow/ice melting for walks, driveways and landing pads, turf conditioning of football and soccer fields and frost prevention in freezers and skating rinks.

Electric heating elements or hydronic piping can be cast in a concrete floor slab ("poured floor system" or "wet system"). They can also be placed under the floor covering ("dry system") or attached directly to a wood sub floor ("sub floor system" or "dry system").

Some commercial buildings are designed to take advantage of thermal mass which is heated or cooled during off peak hours when utility rates are lower. With the heating/cooling system turned off during the day, the concrete mass and room temperature drift up or down within the desired comfort range. Such systems are known as thermally activated building systems or TABS

Hydronic systems

Hydronic systems use water or a mix of water and anti-freeze such as propylene glycol as the heat transfer fluid in a "closed loop" that is recirculated between the floor and the boiler.

Various types of pipes are available specifically for hydronic underfloor heating and cooling systems and are generally made from polyethylene including PEX, PEX-Al-PEX and PERT. Older materials such as Polybutylene (PB) and copper or steel pipe are still used in some locales or for specialized applications.

Hydronic systems require skilled designers and tradespeople familiar with boilers, circulators, controls, fluid pressures and temperature. The use of modern factory assembled sub-stations, used primarily in district heating and cooling, can greatly simplify design requirements and reduce the installation and commissioning time of hydronic systems.

 

Features

Thermal comfort quality

As defined by ANSI/ASHRAE Standard 55 – Thermal Environmental Conditions for Human Occupancy, thermal comfort is, “that condition of mind which expresses satisfaction with the thermal environment and is assessed by subjective evaluation.” Relating specifically to underfloor heating, thermal comfort is influenced by floor surface temperature and associated elements such as radiant asymmetry, mean radiant temperature and operative temperature. Research by Nevins, Rohles, Gagge, P. Ole Fanger et al. show that humans at rest with clothing typical of light office and home wear, exchange over 50% of their sensible heat via radiation.

Underfloor heating influences the radiant exchange by thermally conditioning the interior surfaces with low temperature long wave radiation. The heating of the surfaces suppresses body heat loss resulting in a perception of heating comfort. This general sensation of comfort is further enhanced through conduction (feet on floor) and through convection by the surface's influence on air density. Underfloor cooling works by absorbing both short wave and long wave radiation resulting in cool interior surfaces. These cool surfaces encourage the loss of body heat resulting in a perception of cooling comfort. Localized discomfort due to cold and warm floors wearing normal foot wear and stocking feet is addressed in the ISO 7730 and ASHRAE 55 standards and ASHRAE Fundamentals Handbooks and can be corrected or regulated with floor heating and cooling systems.

Indoor air quality

Underfloor heating can have a positive effect on the quality of indoor air by facilitating the choice of otherwise perceived cold flooring materials such as tile, slate, terrazzo and concrete. These masonry surfaces typically have very low VOC emissions (volatile organic compounds) in comparison to other flooring options. In conjunction with moisture control, floor heating also establishes temperature conditions that are less favorable in supporting mold, bacteria, viruses and dust mites.By removing the sensible heating load from the total HVAC (Heating, Ventilating, and Air Conditioning) load, ventilation, filtration and dehumidification of incoming air can be accomplished with dedicated outdoor air systems having less volumetric turnover to mitigate distribution of airborne contaminates. There is recognition from the medical community relating to the benefits of floor heating especially as it relates to allergens.

Sustainability—energy

Under floor radiant systems are evaluated for sustainability through the principles of efficiency, entropy, exergyand efficacy. When combined with high performance buildings, under floor systems operate with low temperatures in heating and high temperatures in coolingin the ranges found typically in geothermaland solar thermal systems. When coupled with these non combustible, renewable energy sources the sustainability benefits include reduction or elimination of combustion and green house gases produced by boilers and power generation for heat pumps and chillers, as well as reduced demands for non renewables and greater inventories for future generations. This has been supported through simulation evaluationsand though research funded by the U.S. Department of Energy, Canada Mortgage and Housing Corporation, Fraunhofer Institute as well as ASHRAE.

Safety

Low temperature underfloor heating is embedded in the floor or placed under the floor covering. As such it occupies no wall space and creates no burn hazards, nor is it a hazard for physical injuries due to accidental contact leading to tripping and falling. This has been referenced as a positive feature in healthcare facilities including those serving elderly clients and those with dementia. Anecdotally, under similar environmental conditions, heated floors will speed evaporation of wetted floors (showering, cleaning, and spills). Additionally, underfloor heating with fluid filled pipes is useful in heating and cooling explosion proof environments where combustion and electrical equipment can be located remotely from the explosive environment.

Longevity, maintenance and repair

Equipment maintenance and repair is the same as for other water or electrical based HVAC systems except when pipes, cables or mats are embedded in the floor. Early trials (for example homes built by Levitt and Eichler, c. 1940-70’s) experienced failures in embedded copper and steel piping systems as well as failures assigned by the courts to Shell, Goodyear and others for polybutylene and EPDM materials. There also have been a few publicized claims of failed electric heated gypsum panels from the mid 90’s.

Failures associated with most installations are attributable to job site neglect, installation errors and product mishandling such as exposure to ultraviolet radiation. Pre-pour pressure tests required by concrete installation standards and good practice guidelines for the design, construction, operation and repair of radiant heating and cooling systems mitigate problems resulting from improper installation and operation.

Fluid based systems using Cross-linked polyethylene (PE-x) a product developed in the 1930s and its various derivatives such as PE-rt, have demonstrated reliable long term performance in harsh cold-climate applications such as bridge decks, aircraft hangar aprons and landing pads. Since the materials are produced from polyethylene and its bonds are cross-linked, it is highly resistant to corrosion or the temperature and pressure stresses associated with typical fluid based HVAC systems.

 

Economics

There is a wide range of pricing for underfloor systems based on regional differences, application and project complexity. It is widely adopted in the Nordic, Asian and European communities. Consequently the market is more mature and systems relatively more affordable than North America where market share for fluid based systems remains between 3% to 7% of HVAC systems (ref. Statistics Canada and United States Census Bureau).

In energy efficiency buildings such as Passive House, R-2000 or Net Zero Energy, simple thermostatic radiator valves can be installed along with a single compact circulator and small condensing heater controlled without or with basic hot water resetcontrol. Economical electric resistant based systems also are useful in small zones such as bathrooms and kitchens, but also for entire buildings where heating loads are very low and preferably where photovoltaics, wind or hydro is the generating source of electricity. Larger structures will need more sophisticated systems to deal with cooling and heating needs, and often requiring building management control systems to regulate the energy use and control the overall indoor environment.

Low temperature radiant heating and high temperature radiant cooling systems lend themselves well to district energy systems (community based systems) due to the temperature differentials between the plant and the buildings which allow small diameter insulated distribution networks and low pumping power requirements. The low return temperatures in heating and high return temperatures in cooling enable the district energy plant to achieve maximum efficiency. The principles behind district energy with underfloor systems can also be applied to stand alone multi story buildings with the same benefits. Additionally, underfloor radiant systems are ideally suited to renewable energy sources including geothermal and solar thermal systems or any system where waste heat is recoverable.

In the global drive for sustainability, long term economics supports the need to eliminate where possible, compression for cooling and combustion for heating. It will then be necessary to use low quality heat sources for which radiant underfloor heating and cooling is well suited.

System efficiency

System efficiency and energy use analysis takes into account building enclosure performance, efficiency of the heating and cooling plant, system controls and the conductivities, surface characteristics, tube/element spacing and depth of the radiant panel, operating fluid temperatures and wire to water efficiency of the circulators. The efficiency in electric systems is analyzed by similar processes and includes the efficiency of electricity generation.

Though the efficiency of radiant systems is under constant debate with no shortage of anecdotal claims and scientific papers presenting both sides, the low return fluid temperatures in heating and high return fluid temperatures in cooling enable condensing boilers, chillers and heat pumps to operate at or near their maximum engineered performance. The greater efficiency of 'wire to water' versus 'wire to air' flow due to water's significantly greater heat capacity favors fluid based systems over air based systems. Both field application and simulation research have demonstrated significant electrical energy savings with radiant cooling and dedicated outdoor air systems based in part on the previous noted principles.

In Passive Houses, R-2000 homes or Net Zero Energy buildings the low temperatures of radiant heating and cooling systems present significant opportunities to exploit exergy.

Efficiency considerations for flooring surface materials

System efficiency is also affected by the floor covering serving as the radiational boundary layer between the floor mass and occupants and other contents of the conditioned space. For example, carpeting has a greater resistance or lower conductance than tile. Thus carpeted floors need to operate at higher internal temperatures than tile which can create lower efficiencies for boilers and heat pumps. However, when the floor covering is known at the time the system is installed then the internal floor temperature required for a given covering can be achieved through proper tube spacing without sacrificing plant efficiency (though the higher internal floor temperatures may result in increased heat loss from the non-room surfaces of the floor).

The emissivity, reflectivity and absorptivity of a floor surface are critical determinants of its heat exchange with the occupants and room. Unpolished flooring surface materials and treatments have very high emissivity’s (0.85 to 0.95) and therefore make goodheat radiators.

With underfloor heating and cooling ("reversible floors") flooring surfaces with high absorbance and emissivity and low reflectivity are most desirable.

 

 

Zadelmakerstraat 19
5975 XE Sevenum
the Netherlands

T 0031 (0)6 2192 6253
F 0031 (0)84 830 8479
E info@thefloorheater.eu
I www.thefloorheater.eu

 

Input data
General information
underfloor heating
Company information
Sitemap
Downloads